Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(10): 1027-1044, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498995

RESUMO

Discrepancies have emerged concerning the application of sulfur stable isotope ratios as a biosignature in impact crater paleolakes. The first in situ δ34S data from Mars at Gale crater display a ∼75‰ range that has been attributed to an abiotic mechanism. Yet biogeochemical studies of ancient environments on Earth generally interpret δ34S fractionations >21‰ as indicative of a biological origin, and studies of δ34S at analog impact crater lakes on Earth have followed the same approach. We performed analyses (including δ34S, total organic carbon wt%, and scanning electron microscope imaging) on multiple lithologies from the Nördlinger Ries impact crater, focusing on hydrothermally altered impact breccias and associated sedimentary lake-fill sequences to determine whether the δ34S properties define a biosignature. The differences in δ34S between the host lithologies may have resulted from thermochemical sulfate reduction, microbial sulfate reduction, hydrothermal equilibrium fractionation, or any combination thereof. Despite abundant samples and instrumental precision currently exclusive to Earth-bound analyses, assertions of biogenicity from δ34S variations >21‰ at the Miocene Ries impact crater are tenuous. This discourages the use of δ34S as a biosignature in similar environments without independent checks that include the full geologic, biogeochemical, and textural context, as well as a comprehensive acknowledgment of alternative hypotheses.

2.
Mol Plant Pathol ; 24(10): 1220-1237, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306534

RESUMO

The lifecycle of Zymoseptoria tritici requires a carefully regulated asymptomatic phase within the wheat leaf following penetration of the mesophyll via stomata. Here we compare the roles in this process of two key fungal signalling pathways, mutants of which were identified through forward genetics due to their avirulence on wheat. Whole-genome resequencing of avirulent Z. tritici T-DNA transformants identified disruptive mutations in ZtBCK1 from the kinase cascade of the cell wall integrity (CWI) pathway, and the adenylate cyclase gene ZtCYR1. Targeted deletion of these genes abolished the pathogenicity of the fungus and led to similar in vitro phenotypes to those associated with disruption of putative downstream kinases, both supporting previous studies and confirming the importance of these pathways in virulence. RNA sequencing was used to investigate the effect of ZtBCK1 and ZtCYR1 deletion on gene expression in both the pathogen and host during infection. ZtBCK1 was found to be required for the adaptation to the host environment, controlling expression of infection-associated secreted proteins, including known virulence factors. Meanwhile, ZtCYR1 is implicated in controlling the switch to necrotrophy, regulating expression of effectors associated with this transition. This represents the first study to compare the influence of CWI and cAMP signalling on in planta transcription of a fungal plant pathogen, providing insights into their differential regulation of candidate effectors during invasive growth.


Assuntos
Genes Fúngicos , Doenças das Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética , Fatores de Virulência , Triticum/genética , Triticum/microbiologia
3.
Fungal Genet Biol ; 163: 103748, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36309095

RESUMO

The fungal wheat pathogen Zymoseptoria tritici causes major crop losses as the causal agent of the disease Septoria tritici blotch. The infection cycle of Z. tritici displays two distinct phases, beginning with an extended symptomless phase of 1-2 weeks, before the fungus induces host cell death and tissue collapse in the leaf. Recent evidence suggests that the fungus uses little host-derived nutrition during asymptomatic colonisation, raising questions as to the sources of energy required for this initial growth phase. Autophagy is crucial for the pathogenicity of other fungal plant pathogens through its roles in supporting cellular differentiation and growth under starvation. Here we characterised the contributions of the autophagy genes ZtATG1 and ZtATG8 to the development and virulence of Z. tritici. Deletion of ZtATG1 led to inhibition of autophagy but had no impact on starvation-induced hyphal differentiation or virulence, suggesting that autophagy is not required for Z. tritici pathogenicity. Contrastingly, ZtATG8 deletion delayed the transition to necrotrophic growth, despite having no influence on filamentous growth under starvation, pointing to an autophagy-independent role of ZtATG8 during Z. tritici infection. To our knowledge, this study represents the first to find autophagy not to contribute to the virulence of a fungal plant pathogen, and reveals novel roles for different autophagy-associated proteins in Z. tritici.


Assuntos
Ascomicetos , Doenças das Plantas , Virulência/genética , Doenças das Plantas/microbiologia , Autofagia/genética
4.
mBio ; 11(4)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788384

RESUMO

Amino acid metabolism is crucial for fungal growth and development. Ureohydrolases produce amines when acting on l-arginine, agmatine, and guanidinobutyrate (GB), and these enzymes generate ornithine (by arginase), putrescine (by agmatinase), or GABA (by 4-guanidinobutyrase or GBase). Candida albicans can metabolize and grow on arginine, agmatine, or guanidinobutyrate as the sole nitrogen source. Three related C. albicans genes whose sequences suggested that they were putative arginase or arginase-like genes were examined for their role in these metabolic pathways. Of these, Car1 encoded the only bona fide arginase, whereas we provide evidence that the other two open reading frames, orf19.5862 and orf19.3418, encode agmatinase and guanidinobutyrase (Gbase), respectively. Analysis of strains with single and multiple mutations suggested the presence of arginase-dependent and arginase-independent routes for polyamine production. CAR1 played a role in hyphal morphogenesis in response to arginine, and the virulence of a triple mutant was reduced in both Galleria mellonella and Mus musculus infection models. In the bloodstream, arginine is an essential amino acid that is required by phagocytes to synthesize nitric oxide (NO). However, none of the single or multiple mutants affected host NO production, suggesting that they did not influence the oxidative burst of phagocytes.IMPORTANCE We show that the C. albicans ureohydrolases arginase (Car1), agmatinase (Agt1), and guanidinobutyrase (Gbu1) can orchestrate an arginase-independent route for polyamine production and that this is important for C. albicans growth and survival in microenvironments of the mammalian host.


Assuntos
Agmatina/metabolismo , Arginina/metabolismo , Candida albicans/enzimologia , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Ureo-Hidrolases/metabolismo , Aminoácidos/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Clonagem Molecular , Feminino , Larva/microbiologia , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Mariposas/microbiologia , Células RAW 264.7 , Ureo-Hidrolases/genética , Virulência
5.
Proc Biol Sci ; 287(1931): 20200761, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32673559

RESUMO

Antimicrobial resistance frequently carries a fitness cost to a pathogen, measured as a reduction in growth rate compared to the sensitive wild-type, in the absence of antibiotics. Existing empirical evidence points to the following relationship between cost of resistance and virulence. If a resistant pathogen suffers a fitness cost in terms of reduced growth rate it commonly has lower virulence compared to the sensitive wild-type. If this cost is absent so is the reduction in virulence. Here we show, using experimental evolution of drug resistance in the fungal human pathogen Candida glabrata, that reduced growth rate of resistant strains need not result in reduced virulence. Phenotypically heterogeneous populations were evolved in parallel containing highly resistant sub-population small colony variants (SCVs) alongside sensitive sub-populations. Despite their low growth rate in the absence of an antifungal drug, the SCVs did not suffer a marked alteration in virulence compared with the wild-type ancestral strain, or their co-isolated sensitive strains. This contrasts with classical theory that assumes growth rate to positively correlate with virulence. Our work thus highlights the complexity of the relationship between resistance, basic life-history traits and virulence.


Assuntos
Candida glabrata , Farmacorresistência Fúngica , Antifúngicos , Proteínas Fúngicas , Humanos , Testes de Sensibilidade Microbiana , Fenótipo
6.
J Biol Chem ; 295(29): 9974-9985, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32487750

RESUMO

To investigate the role of oxidative stress-induced DNA damage and mutagenesis in cellular senescence and immortalization, here we profiled spontaneous and methylene blue plus light-induced mutations in the cII gene from λ phage in transgenic mouse embryonic fibroblasts during the transition from primary culture through senescence and immortalization. Consistent with detection of characteristic oxidized guanine lesions (8-oxodG) in the treated cells, we observed significantly increased relative cII mutant frequency in the treated pre-senescent cells which was augmented in their immortalized counterparts. The predominant mutation type in the treated pre-senescent cells was G:C→T:A transversion, whose frequency was intensified in the treated immortalized cells. Conversely, the prevailing mutation type in the treated immortalized cells was A:T→C:G transversion, with a unique sequence-context specificity, i.e. flanking purines at the 5' end of the mutated nucleotide. This mutation type was also enriched in the treated pre-senescent cells, although to a lower extent. The signature mutation of G:C→T:A transversions in the treated cells accorded with the well-established translesion synthesis bypass caused by 8-oxodG, and the hallmark A:T→C:G transversions conformed to the known replication errors because of oxidized guanine nucleosides (8-OHdGTPs). The distinctive features of photosensitization-induced mutagenesis in the immortalized cells, which were present at attenuated levels, in spontaneously immortalized cells provide insights into the role of oxidative stress in senescence bypass and immortalization. Our results have important implications for cancer biology because oxidized purines in the nucleoside pool can significantly contribute to genetic instability in DNA mismatch repair-defective human tumors.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/química , Senescência Celular/genética , Mutagênese , Mutação , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Transgênicos
7.
Traffic ; 21(7): 479-487, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32378777

RESUMO

In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule-based motor proteins, serving as platforms for the long-distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long-distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics-based approach we show that contact-induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA-mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/genética , Endossomos , Proteínas Fúngicas/genética , Humanos , Microtúbulos , Virulência
8.
Geobiology ; 17(3): 247-260, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30629323

RESUMO

By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate-carbon isotope data. Despite the first appearance and early innovation among eukaryotic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diversity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3-1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid-Proterozoic redox landscape. The group is well dated and minimally metamorphosed (of oil window maturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid-Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indicators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace-metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predominantly below the photic zone during the deposition of organic-rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4-desmethylsteranes) and only traces of gammacerane in some samples-despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker alkanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long-term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine microbial communities. Given that molecular clocks predict that sterol synthesis evolved early in eukaryotic history, and (bacterial) fossil steroids have been found previously in 1.64 Ga rocks, then a very low environmental abundance of eukaryotes relative to bacteria is our preferred explanation for the lack of regular steranes and only traces of gammacerane in a few samples. It is also possible that early eukaryotes adapted to Mesoproterozoic marine environments did not make abundant steroid lipids or tetrahymanol in their cell membranes.


Assuntos
Biomarcadores/análise , Eucariotos/metabolismo , Fósseis , Sedimentos Geológicos/química , Água do Mar/química , Northern Territory , Oxirredução
9.
J Fungi (Basel) ; 4(3)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200639

RESUMO

In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.

10.
Sci Rep ; 8(1): 8899, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891974

RESUMO

Candida albicans displays a variety of morphological forms, and the ability to switch forms must be linked with cell cycle control. In budding yeast the Mitotic Exit Network (MEN) acts to drive mitotic exit and signal for cytokinesis and cell separation. However, previous reports on the MEN in C. albicans have raised questions on its role in this organism, with the components analysed to date demonstrating differing levels of importance in the processes of mitotic exit, cytokinesis and cell separation. This work focuses on the role of the Cdc15 kinase in C. albicans and demonstrates that, similar to Saccharomyces cerevisiae, it plays an essential role in signalling for mitotic exit and cytokinesis. Cells depleted of Cdc15 developed into elongated filaments, a common response to cell cycle arrest in C. albicans. These filaments emerged exclusively from large budded cells, contained two nuclear bodies and exhibited a hyper-extended spindle, all characteristic of these cells failing to exit mitosis. Furthermore these filaments displayed a clear cytokinesis defect, and CDC15 over-expression led to aberrant cell separation following hyphal morphogenesis. Together, these results are consistent with Cdc15 playing an essential role in signalling for mitotic exit, cytokinesis and cell separation in C. albicans.


Assuntos
Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas de Ligação ao GTP/metabolismo , Mitose , Candida albicans/citologia , Candida albicans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação ao GTP/genética , Expressão Gênica , Técnicas de Inativação de Genes
11.
Int J Mol Sci ; 19(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337872

RESUMO

To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.


Assuntos
Análise Mutacional de DNA , Fibroblastos/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Taxa de Mutação , Estatística como Assunto
12.
Lung Cancer ; 112: 41-46, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29191599

RESUMO

OBJECTIVES: Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. MATERIALS AND METHODS: We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. RESULTS AND CONCLUSION: We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Mutagênese , Fumar , Animais , Análise Mutacional de DNA , Fibroblastos , Humanos , Camundongos , Mutagênicos , Taxa de Mutação , Fumar/efeitos adversos
14.
Chem Res Toxicol ; 30(2): 689-698, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28107623

RESUMO

More precise identification and treatment monitoring of prediabetic/diabetic individuals will require additional biomarkers to complement existing diagnostic tests. Candidates include hyperglycemia-induced adducts such as advanced glycation end products (AGEs) of proteins, lipids, and DNA. The potential for DNA-AGEs as diabetic biomarkers was examined in a longitudinal study using the Leprdb/db animal model of metabolic syndrome. The DNA-AGE, N2-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) was quantified by mass spectrometry using isotope dilution from the urine and tissue of hyperglycemic and normoglycemic mice. Hyperglycemic mice (fasting plasma glucose, FPG, ≥ 200 mg/dL) displayed a higher median urinary CEdG value (238.4 ± 112.8 pmol/24 h) than normoglycemic mice (16.1 ± 11.8 pmol/24 h). Logistic regression analysis revealed urinary CEdG to be an independent predictor of hyperglycemia. Urinary CEdG was positively correlated with FPG in hyperglycemic animals and with HbA1c for all mice. Average tissue-derived CEdG was also higher in hyperglycemic mice (18.4 CEdG/106 dG) than normoglycemic mice (4.4 CEdG/106 dG). Urinary CEdG was significantly elevated in Leprdb/db mice relative to Leprwt/wt, and tissue CEdG values increased in the order Leprwt/wt < Leprwt/db < Leprdb/db. These data suggest that urinary CEdG measurement may provide a noninvasive quantitative index of glycemic status and augment existing biomarkers for the diagnosis and monitoring of diabetes.


Assuntos
DNA/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Produtos Finais de Glicação Avançada/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
15.
Fungal Genet Biol ; 69: 84-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973462

RESUMO

Candida albicans demonstrates three main growth morphologies: yeast, pseudohyphal and true hyphal forms. Cell separation is distinct in these morphological forms and the process of separation is closely linked to the completion of mitosis and cytokinesis. In Saccharomyces cerevisiae the small GTPase Tem1 is known to initiate the mitotic exit network, a signalling pathway involved in signalling the end of mitosis and initiating cytokinesis and cell separation. Here we have characterised the role of Tem1 in C. albicans, and demonstrate that it is essential for mitotic exit and cytokinesis, and that this essential function is signalled through the kinase Cdc15. Cells depleted of Tem1 displayed highly polarised growth but ultimately failed to both complete cytokinesis and re-enter the cell cycle following nuclear division. Consistent with its role in activating the mitotic exit network Tem1 localises to spindle pole bodies in a cell cycle-dependent manner. Ultimately, the mitotic exit network in C. albicans appears to co-ordinate the sequential processes of mitotic exit, cytokinesis and cell separation.


Assuntos
Candida albicans/fisiologia , Citocinese , Mitose , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Candida albicans/genética , Proteínas de Ciclo Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/genética , Transdução de Sinais
16.
PLoS One ; 9(3): e91542, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643045

RESUMO

The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Técnicas Analíticas Microfluídicas , Anotação de Sequência Molecular , Mapas de Interação de Proteínas , Subunidades Proteicas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(46): 18407-12, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24170863

RESUMO

The Mesozoic Era is characterized by numerous oceanic anoxic events (OAEs) that are diagnostically expressed by widespread marine organic-carbon burial and coeval carbon-isotope excursions. Here we present coupled high-resolution carbon- and sulfur-isotope data from four European OAE 2 sections spanning the Cenomanian-Turonian boundary that show roughly parallel positive excursions. Significantly, however, the interval of peak magnitude for carbon isotopes precedes that of sulfur isotopes with an estimated offset of a few hundred thousand years. Based on geochemical box modeling of organic-carbon and pyrite burial, the sulfur-isotope excursion can be generated by transiently increasing the marine burial rate of pyrite precipitated under euxinic (i.e., anoxic and sulfidic) water-column conditions. To replicate the observed isotopic offset, the model requires that enhanced levels of organic-carbon and pyrite burial continued a few hundred thousand years after peak organic-carbon burial, but that their isotope records responded differently due to dramatically different residence times for dissolved inorganic carbon and sulfate in seawater. The significant inference is that euxinia persisted post-OAE, but with its global extent dwindling over this time period. The model further suggests that only ~5% of the global seafloor area was overlain by euxinic bottom waters during OAE 2. Although this figure is ~30× greater than the small euxinic fraction present today (~0.15%), the result challenges previous suggestions that one of the best-documented OAEs was defined by globally pervasive euxinic deep waters. Our results place important controls instead on local conditions and point to the difficulty in sustaining whole-ocean euxinia.


Assuntos
Modelos Químicos , Oxigênio/análise , Água do Mar/química , Isótopos de Enxofre/análise , História Antiga , Sulfeto de Hidrogênio/química , Oceanos e Mares
18.
BMC Res Notes ; 6: 294, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23886038

RESUMO

BACKGROUND: The Candida albicans cell wall is the first point of contact with the host, and its outer surface is heavily enriched in mannoproteins modified through the addition of N- and O-mannan. Previous work, using mutants with gross defects in glycosylation, has clearly identified the importance of mannan in the host-pathogen interaction, immune recognition and virulence. Here we report the first analysis of the MNN1 gene family, which contains six members predicted to act as α-1,3 mannosyltransferases in the terminal stages of glycosylation. FINDINGS: We generated single null mutants in all members of the C. albicans MNN1 gene family, and disruption of MNN14 led to both in vitro and in vivo defects. Null mutants in other members of the family demonstrated no phenotypic defects, suggesting that these members may display functional redundancy. The mnn14Δ null mutant displayed hypersensitivity to agents associated with cell wall and glycosylation defects, suggesting an altered cell wall structure. However, no gross changes in cell wall composition or N-glycosylation were identified in this mutant, although an extension of phosphomannan chain length was apparent. Although the cell wall defects associated with the mnn14Δ mutant were subtle, this mutant displayed a severe attenuation of virulence in a murine infection model. CONCLUSION: Mnn14 plays a distinct role from other members of the MNN1 family, demonstrating that specific N-glycan outer chain epitopes are required in the host-pathogen interaction and virulence.


Assuntos
Candida albicans/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Virulência/genética , Candida albicans/patogenicidade , Glicosilação , Família Multigênica , Filogenia
19.
Antimicrob Agents Chemother ; 57(8): 3889-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733464

RESUMO

Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbitol, consistent with cell wall involvement. The cell wall-targeting agent caffeine caused hypersensitivity to CQ, as did cell wall perturbation by sonication. The phenotypes were not caused by CQ-induced changes to cell wall components. Instead, CQ accumulated to higher levels in cells with perturbed cell walls: CQ uptake was 2- to 3-fold greater in bck1Δ and slt2Δ mutants than in wild-type yeast. CQ toxicity was synergistic with that of the major cell wall-targeting antifungal drug, caspofungin. The MIC of caspofungin against the yeast pathogen Candida albicans was decreased 2-fold by 250 µM CQ and up to 8-fold at higher CQ concentrations. Similar effects were seen in Candida glabrata and Aspergillus fumigatus. The results show that the cell wall is critical for CQ resistance in fungi and suggest that combination treatments with cell wall-targeting drugs could have potential for antifungal treatment.


Assuntos
Antimaláricos/farmacologia , Parede Celular/efeitos dos fármacos , Cloroquina/farmacologia , Farmacorresistência Fúngica , Saccharomyces cerevisiae/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Transporte Biológico , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Caspofungina , Sinergismo Farmacológico , Equinocandinas/farmacologia , Lipopeptídeos , Testes de Sensibilidade Microbiana , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sorbitol/farmacologia
20.
PLoS Pathog ; 9(4): e1003276, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23633946

RESUMO

The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans.


Assuntos
Candida albicans/imunologia , Candida albicans/patogenicidade , Mananas/imunologia , Manose/metabolismo , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/imunologia , Animais , Candida albicans/enzimologia , Candidíase/imunologia , Parede Celular/química , Parede Celular/imunologia , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Humanos , Mananas/química , Manose/química , Manosiltransferases/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Alinhamento de Sequência , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...